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Luminescent lanthanide chelator and pH-sensitive fluores-
cent dyes were synthesized and conjugated only to a terminal
site of a protein through mild enzymatic reaction.

N- or C-terminal-specific modification is an effective meth-
od for labelling proteins while retaining their activity.! Transglu-
taminase (TGase) is known to catalyze acyl transfer reactions
between the y-carboxyamide group of glutamine (Gln) residues
and various molecules that contain certain lengths of primary al-
kyl amines. By applying this mild enzymatic reaction, we can
obtain active proteins labelled only at a Gln site in a terminally
appended TGase substrate peptide sequence (Pro—Lys—Pro—
GIn-GIn-Phe—Met; TG1 sequence).”> Compared to convention-
al chemical labelling and/or ribosome-mediated specific label-
ling,* the TGase-mediated labelling method is well suited for
the introduction of bulky fluorescent groups into active pro-
teins.’ Because the recognition of the transglutaminase for the
amine-substrate is fairly loose, different types of commercial
amine-containing fluorophores, such as dansyl cadaverine? and
fluorescein cadaverine,’ have successfully been incorporated in-
to a specific site of proteins.

These facts motivated us to synthesize some novel lumino-
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Scheme 1. Reagents and conditions: (i) diethylenetriaminepen-
taacetic dianhydride, TEA, DMF, rt; (ii) cadaverine, rt, 70%; (iii)
cadaverine, TEA, DMF, rt, 55%.

phores that can be recognized by TGase. First, a luminescent lan-
thanide chelate was chosen as the luminophore since it is known
to exhibit distinct luminescence properties when irradiated with
light.> The structure and synthesis® of the cadaverine-linked lan-
thanide chelator 1 is shown in Scheme 1.7 In the presence of
TGase, the HPLC-purified 1 was mixed with a target protein
(glutathione S-transferase; GST) that has the terminally append-
ed TG1 sequence.® Introduction of 1 into a terminal site of the
target protein was confirmed by sodium dodecyl sulfate/poly-
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Figure 1. SDS-PAGE analysis of terminal-labelled protein.
The proteins were applied to 15% SDS-PAGE and the gel was
stained with Tb3*. (a) The stained protein band was visualized
with a UV transilluminator. (b) Whole proteins were visualized
using the SYPRO® Orange (Molecular Probes, Inc.) protein gel
staining system. The proteins were then transferred to PVDF
membranes, followed by incubation with an anti-GST antibody
and alkaliphosphatase-labelled anti-goat IgG. (c) The bands
were visualized with Western Blue substrate (Promega). Each
lane contains the following: lanes 1 and 4 contain TG1-GST
and lane 2 contains wild-type GST. All lanes contain lanthanide
chelator 1. Lanes 1-3 contain transglutaminase (TGase). Lane M
contains a prestained molecular weight marker.
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acrylamide gel electrophoresis (SDS-PAGE), followed by stain-
ing with Tb3*-containing PIPES/NaCl buffer. As shown in
Figure 1, a characteristic green-white luminescence band was
observed only in the presence of both TG1-GST and TGase (lane
1). Both SYPRO® Orange staining of the gel (Figure 1b) and
Western blotting using an anti-GST antibody and alkaline phos-
phatase-labelled anti-Goat IgG (Figure 1c) indicated that this lu-
minescent band was identified as a chimeric GST molecule.
Once the chimeric GST and 1 conjugate was complexed with
Tb3* before electrophoresis, the very same green-white lumines-
cence band was observed with the boiling pretreatment for SDS-
PAGE without further staining with the Tb>* solution after elec-
trophoresis. This means that a certain amount of the GST-1-
Tb** ternary complex still remains even after the harsh incuba-
tion conditions at 95 °C for 5 min in SDS-sample buffer (50 mM
Tris-HCI (pH 6.8), 4% SDS, 2% 2-mercaptoethanol, 12% glyc-
erol, and 0.01% bromophenol blue).

The formation of the GST-1-Tb** ternary complex was fur-
ther confirmed by 15% non-denaturing native PAGE analysis.
As shown in Figure 2, the mobility of wild-type GST, TG1-
GST, and TG1-GST-1 (lanes 1, 2, and 4, respectively) were al-
most the same. However, once TG1-GST-1 was complexed with
Tb**, its electrophoretic mobility was quite different; over 90%
of the GST band was shifted to a slower mobility (lane 3). This
band shift seems to have mainly occurred from the cationic
Tb** -neutralized electric charge of carboxylic anions on lantha-
nide chelator 1. At this stage, we conclude that almost all of the
TG1-GST was modified with 1-Tb**. Earlier studies suggested
that the amine specificity of TGase probably required the posi-
tioning of a suitable hydrophobic substituent at an optimal dis-
tance from the primary amino group of the alkylamine side
chain.® Tt was surprising that lanthanide chelator 1 was success-
fully recognized by TGase, even though its hydrophilic substitu-
ent (i.e., diethylenetriaminepentaacetic acid; DTPA) is attached
to one side of the cadaverine residue.

GST is a metabolizing enzyme that catalyzes the conjuga-
tion of glutathione to electrophilic substrates. To evaluate the ef-
fects of GST-1-Tb>* ternary complex formation on the enzymat-
ic activity, we performed the enzymatic activity assay as
described in our previous paper.® More than 70% of the Tb>* ter-
nary complex protein was active, so most of the modified protein
retained the native structure.

Second, a commercially available succinimide ester of fluo-
rescein analog was also derivatised with cadaverine
(Scheme 1b).” This pH-sensitive fluorescent dye was also suc-
cessfully introduced into the terminal site of GST with the reten-
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Figure 2. Native-PAGE analysis of terminal-labelled protein.
The proteins were applied to 15% native-PAGE, and transferred
to PVDF membranes, followed by incubation with an anti-GST
antibody and alkaliphosphatase-labelled anti-goat IgG. The
bands were visualized with Western Blue substrate (Promega).
Each lane contains the following: lane 1 contains wild-type
GST. Lanes 2—4 contain TG1-GST. Lane 3 contains both chelate
dye 1 and Tb**, whereas lane 4 contains only 1.
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tion of the protein’s native activity, using the same method as de-
scribed previously. As expected, the fluorescent peak position of
the labelled protein shifted to longer wavelengths continuously
from pH 6-9. It is emphasized that the coupling reaction be-
tween cadaverine and succinimide esters of fluorophores is an
extremely useful method to obtain novel fluorescent TGase sub-
strates because many other colour variants of succinimide esters
of fluorescein analogs are also commercially available. Some of
their photophysical features such as pH sensitivity and/or photo-
stabilities are known to be excellent.

In conclusion, two different novel luminescent substrates for
TGase were synthesized in a single step, and their enzymatic in-
corporation into an active protein only at a terminal site was in-
vestigated. This is the first example in which a single lanthanide
luminophore was covalently bound only to the terminal site of an
active protein. The extremely long luminescent lifetime of a lan-
thanide chelate-active protein conjugate can allow for a unique
time-resolved fluoroimmunoassay® in which background fluo-
rescent emission of the biological matrix, such as the autofluor-
escence in a living cell, can be effectively removed. Alternative-
ly, using luminescence resonance energy transfer (LRET) from
lanthanide chelate, real-time observation of the interaction be-
tween the derivatized active protein and another biological
molecule may also be possible at the single molecule level and
in the native in vivo context.® Using the pH-sensitive fluorescent
dye, we may link information directly between a microenviron-
mental pH change around a target protein and the translocation
and/or conformational change of the target protein.!®!! For
these assays, we are currently trying to deliver these lumino-
phore-modified proteins into living cells using a lipid-mediated
delivery system.!?
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